Synchronised monitoring of plant and insect diversity: a case study using automated Malaise traps and DNA-based methods

Author:

Thomas Leighton J,Kirse Ameli,Raus Hanna,Langen Kathrin,Nümann Björn,Tschan Georg,Gemeinholzer BirgitORCID,Wägele J. Wolfgang,Bourlat SarahORCID

Abstract

The occurrence and distribution of insects and their possible associations with plant species are largely unknown in Germany and baseline data to monitor future trends are urgently needed. Using newly-designed automated Malaise trap multi-samplers, the occurrence of insect species and their potential associations with plants was monitored synchronously at two contrasting field sites in Germany: an urban botanical garden and a forest research station. Taxa were identified by metabarcoding of the insects and the plant traces present in the preservative ethanol of the Malaise trap samples. For comparison, a botanical survey was conducted in the vicinity of the traps. Across both sites, we identified a total of 1290 exact sequence variants (ESVs) assigned to Insecta, of which 205 are known to be pollinators. In the botanical garden, we detected the occurrence of 128 plant taxa, of which 41 also had one of their known insect pollinator species detected. Insect species richness was highest in May, mainly attributed to an increase in Diptera. These results present a case study of the applicability of automated sampling and DNA-based methods to monitor the timings of flowering and corresponding activity of plant-visiting insects.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3