GallOnt: An ontology for plant gall phenotypes

Author:

Deans AndrewORCID,Nastasi LouisORCID,Davis Charles

Abstract

Galls are novel plant structures that develop in response to select biotic stressors. These structures, extended phenotypes of the inducer, usually serve to protect and feed the inducer or its progeny. This life history strategy has evolved dozens of times, and tens of thousands of species — including many bacteria, fungi, nematodes, mites and insects — are capable of manipulating plants in this way. The variation in gall phenotypes is extraordinary across species but usually predictable for each species of inducer. We introduce here a new ontology, GallOnt, that facilitates consistent descriptions and the semantic representation of and reasoning over plant gall phenotype data. GallOnt was largely developed from ontologies in the Open Biological and Biomedical Ontology (OBO) Foundry and stands to connect plant gall phenotypes to knowledge derived from model plant systems, including genotype-phenotype and agricultural research. We also introduce the idea of a new gall data standard — Minimum Information for the Description of Galls (MIDG version 0.1) — as a starting point for discussions regarding cecidology best practices.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3