Predictive ecological niche model for Cinnamomum parthenoxylon (Jack) Meisn. (Lauraceae) from Last Glacial Maximum to future in Vietnam

Author:

Pham Mai-Phuong,Vu Duy Dinh,Nguyen Thanh Tuan,Nguyen Van SinhORCID

Abstract

Cinnamomum parthenoxylon (Jack) Meisn. is a tree in genus Cinnamomum that has been facing global threats due to forest degradation and habitat fragmentation. Many recent studies aim to describe habitats and assess population and species genetic diversity for species conservation by expanding afforestation models for this species. Understanding their current and future potential distribution plays a major role in guiding conservation efforts. Using five modern machine-learning algorithms available on Google Earth Engine helped us evaluate suitable habitats for the species. The results revealed that Random Forest (RF) had the highest accuracy for model comparison, outperforming Support Vector Machine (SVM), Classification and Regression Trees (CART), Gradient Boosting Decision Tree (GBDT) and Maximum Entropy (MaxEnt). The results also showed that the extremely suitable ecological areas for the species are mostly distributed in northern Vietnam, followed by the North Central Coast and the Central Highlands. Elevation, Temperature Annual Range and Mean Diurnal Range were the three most important parameters affecting the potential distribution of C. parthenoxylon. Evaluation of the impact of climate on its distribution under different climate scenarios in the past (Last Glacial Maximum and Mid-Holocene), in the present (Worldclim) and in the future (using four climate change scenarios: ACCESS, MIROC6, EC-Earth3-Veg and MRI-ESM2-0) revealed that of C. parthenoxylon would likely expand to the northeast, while a large area of central Vietnam will gradually lose its adaptive capacity by 2100.

Publisher

Pensoft Publishers

Reference38 articles.

1. The efficacy of Cinnamomum parthenoxylon roots as a biopesticide towards termite and wood-rotting fungi;Adfa;International Journal of Agricultural Technology,2022

2. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review

3. Recreational drug discovery: natural products as lead structures for the synthesis of smart drugs

4. Ensemble forecasting of species distributions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3