Impedance spectroscopy study of lanthanum-gallium tantalate single crystals grown under different conditions

Author:

Anfimov Ilya M.,Buzanov Oleg A.ORCID,Kozlova Anna P.ORCID,Kozlova Nina S.ORCID,Zabelina Evgeniya V.ORCID

Abstract

The effect of the growth atmosphere and the type of deposited current conductive coatings on the impedance/admittance of La3Ta0.5Ga5.5O14lanthanum-gallium tantalate has been revealed. The lanthanum-gallium tantalate single crystals have been grown in argon and argon with admixture of oxygen gas atmospheres. Current conductive coatings of iridium, gold with a titanium sublayer, and silver with a chromium sublayer have been deposited onto the single crystals. The tests have been carried out taking into account the polarity of the specimens. The temperature and frequency dependences of the admittance of lanthanum-gallium tantalate have been measured in an alternating electric field at frequencies in the 5 Hz to 500 kHz range and temperatures from 20 to 450 °C. The specimens with gold current conductive coating have the lowest admittance. Analysis of the temperature and frequency functions of the dielectric permeability has shown the absence of any frequency dependence in the entire test range.Equivalent electric circuits have been constructed. Graphic-analytic and numeric analysis of the equivalent electric circuits of the electrode/langatate/electrode cells has shown that the admittance of the metal/langatate/metal cells is controlled by the electrochemical processes at the electrode/electrolyte/electrode interface. The absolute values of the impedance components depend on the langatate growth conditions and the type of the electrodes. Our measurements suggest that the material of the current conductive coating has a greater effect on the absolute values of the measured parameters than the growth atmosphere.

Publisher

Pensoft Publishers

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3