Outlooks for development of silicon nanoparticle memory cells

Author:

Talyzin Igor V.,Samsonov Vladimir M.

Abstract

Phase change memory is based on changes in the optical, electrical or other properties of materials during phase transitions, e.g. an amorphous to crystalline transition. Currently existing and potential applications of this memory are primarily based on multicomponent alloys of metals and semiconductors. However single-component nanoparticles including Si ones are also of interest as promising nanosized memory cells. The potential for developing this type of memory cells is confirmed by the fact that the optical absorption index of bulk amorphous silicon is of the same order of magnitude as that of crystalline silicon. Certainly this phenomenon can hardly be implemented with a single nanoparticle the size of which is within light wavelength. Using molecular dynamics and the Stillinger-Weber potential we have studied the regularities of melting and the conditions of crystallization of silicon nanoparticles containing within 105 atoms. We have shown that cooling of nanosized silicon drops at a 0.2 TK/s rate or higher rates causes their amorphous transition whereas single-component nanosized metallic drops crystallize in molecular dynamics experiments even at a 1 TK/s rate. Further heating of amorphous silicon nanoparticles containing above 5 ∙ 104 atoms causes their crystallization in a specific temperature range from 1300 to 1400 K. We have concluded that there is a possibility of developing phase change memory cells on the basis of the above phase transitions. An amorphous transition of a nanoparticle can be achieved by its melting and further cooling to room temperature at a 0.2 TK/s rate whereas a crystalline transition, by its heating to 1300–1400 K at a 0.2 TK/s rate followed by cooling. Results of molecular dynamics experiments suggest there is a minimum silicon nanoparticle size for which the development of phase change memory cells becomes theoretically impossible at a given temperature change rate. For a 0.2 TK/s temperature change rate this minimum size is 12.4 nm (number of atoms approx. 5 ∙ 104).

Publisher

Pensoft Publishers

Subject

Automotive Engineering

Reference33 articles.

1. Ischenko A.A., Fetisov G.V., Aslanov L.A. Nanokremniy: svoystva, polucheniye, primeneniye, metody issledovaniya i kontrolya [Nanosilicon: properties, preparation, application, research and control methods]. Moscow: FIZMATLIT, 2011, 647 p. (In Russ.)

2. Tanenbaum A.S. Structured computer organization. Pearson Prentice Hall, 2006, 777 p.

3. Interfacial phase-change memory

4. Phase-change materials for rewriteable data storage

5. Evidence of field induced nucleation in phase change memory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3