Classification of CNC Vibration Speeds by Heralick Features

Author:

Kuncan MelihORCID,Kaplan KaplanORCID,Kaya YılmazORCID,Minaz Mehmet RecepORCID,Ertunç H. MetinORCID

Abstract

In the contemporary landscape of industrial manufacturing, the concept of computer numerical control (CNC) has emerged due to the optimization of conventional machinery, distinguished by its remarkable precision and expeditious processing capabilities. These inherent advantages have seamlessly paved the way for the pervasive integration of CNC machines across a myriad of industrial manufacturing sectors. The present study embarks upon a comprehensive inquiry, delving into the intricate analysis of a specialized prototype CNC molding machine, encompassing a meticulous assessment of its structural rigidity, robustness, and propensity for vibrational occurrences. Moreover, an insightful exploration is undertaken to discern the intricate interplay between vibrational signals and intricate machining processes, particularly under diverse conditions such as the presence or absence of the cutting tool, and at varying rotational speeds denoted in revolutions per minute (RPM). The trajectory of this research voyage encompasses an extensive array of empirical experiments meticulously conducted on the prototype CNC machine, with synchronous real-time acquisition of vibrational data. This empirical journey starts by generating two distinct datasets, each meticulously designed to encompass an assemblage of seven distinct rotational speeds, spanning the spectrum from 18000 to 30000 RPM, thereby facilitating enhanced diversity within the dataset. In parallel, a secondary dataset is meticulously derived from the CNC machine operating in the absence of the cutting tool, thereby encapsulating an exhaustive range of 20 discrete RPM values. The extraction of pivotal features aimed at discerning between the vibrational signals arising from distinct conditions (i.e., those emanating from situations involving the presence or absence of the cutting tool) and the associated variance in CNC machine speeds is facilitated through an innovative framework grounded in co-occurrence matrices. The culmination of this methodological framework is the identification of discernible co-occurrence matrices, thereby facilitating the subsequent computation of Heralick features. The classification effort was performed systematically using 10-fold cross-validation analysis, covering a number of different machine learning models. The outcomes emanating from this intricate sequence of systematic methodologies underscore remarkable achievements. Specifically, the classification of vibrational signals corresponding to varying CNC machine speeds, contingent upon the presence or absence of the cutting tool, yields commendable accuracy rates of 94.27% and 94.16%, respectively. Notably, an exemplary accuracy rate of 100% is attained when classifying differing conditions (i.e., situations involving the presence or absence of the cutting tool) across specific RPM settings, prominently at 22000  24000  26000  28000  and 30000 RPM. 

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3