Climatic and pedoclimatic factors driving C and N dynamics in soil and surface water in the alpine tundra (NW-Italian Alps)

Author:

Freppaz Michele,Viglietti Davide,Balestrini Raffaella,Lonati Michele,Colombo Nicola

Abstract

In alpine tundra the interannual and seasonal variability of C and N forms in soil and lake water during the short snow-free season could be significant and related to climatic and pedoclimatic variables. The hypothesis that not only the climatic and pedoclimatic parameters recorded during the summer season but also the ones measured during the previous snow-covered season could contribute to explaining the C and N dynamics in soil and surface water was tested along 10 snow-free seasons in 3 sites in the alpine tundra in the north-western Italian Alps (LTER site Istituto Mosso). Among the considered parameters, the snow cover duration (SCD) exerted a primary control on soil N-NH4+, DOC, Cmicr, Nmicr and DOC:DON ratio, with an inverse relationship. A long SCD might cause the consumption of all the subnival substrata by the soil microorganisms, determining a C starvation during the subsequent snow-free season. An opposite trend was observed for the lake water, where a longer SCD corresponded to a higher content of inorganic N forms. Among the pedoclimatic indices, the number of soil freeze/thaw cycles (FTC) recorded during the snow-covered season had a positive relation with most of soil C and N forms and N-NO3 in lake water. Only the soil DON showed an inverse pattern, and this result is consistent with the hypothesis that FTC released soil DON, subsequently decomposed and mineralized. Only N-NO3 had a significant intraseasonal variability, reaching the highest values in September both in soil and water, revealing a significant slowdown of the contribution of soil N immobilization processes.

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3