Megafire effects on spotted owls: elucidation of a growing threat and a response to Hanson et al. (2018)

Author:

Jones Gavin M.,Gutiérrez R. J.,Kramer H. Anu,Tempel Douglas J.,Berigan William J.,Whitmore Sheila A.,Peery M. Zachariah

Abstract

The extent to which wildfire adversely affects spotted owls (Strix occidentalis) is a key consideration for ecosystem restoration efforts in seasonally dry forests of the western United States. Recently, Jones et al. (2016) demonstrated that the 2014 King Fire (a “megafire”) adversely affected a population of individually-marked California spotted owls (S. o. occidentalis) monitored as part of a long-term demographic study in the Sierra Nevada, California, USA because territory occupancy declined substantially at territories burned at high-severity and GPS-tagged spotted owls avoided large patches of high-severity fire. Hanson et al. (2018) attempted to reassess changes in territory occupancy of the Jones et al. (2016) study population and claimed that occupancy declined as a result of post-fire salvage logging not fire per se and suggested that the avoidance of GPS-marked owls from areas that burned at high-severity was due to post-fire logging rather than a response to high-severity fire. Here, we demonstrate that Hanson et al. (2018) used erroneous data, inadequate statistical analyses and faulty inferences to reach their conclusion that the King Fire did not affect spotted owls and, more broadly, that large, high-severity fires do not pose risks to spotted owls in western North American dry forest ecosystems. We also provide further evidence indicating that the King Fire exerted a clear and significant negative effect on our marked study population of spotted owls. Collectively, the additional evidence presented here and in Jones et al. (2016) suggests that large, high-severity fires can pose a threat to spotted owls and that restoration of natural low- to mixed-severity frequent fire regimes would likely benefit both old-forest species and dry forest ecosystems in this era of climate change. Meeting these dual objectives of species conservation and forest restoration will be complex but it is made more challenging by faulty science that does not acknowledge the full range of wildfire effects on spotted owls.

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3