Recent changes in tropical-dry-forest connectivity within the Balsas Basin Biogeographic Province: potential effects on endemic-bird distributions

Author:

Galindo-Cruz AlejandraORCID,Sahagún-Sánchez Francisco JavierORCID,López-Barrera FabiolaORCID,Rojas-Soto OctavioORCID

Abstract

Maintaining landscape connectivity is a conservation priority for biodiversity as it may mitigate the adverse effects of forest degradation, fragmentation, and climate change by facilitating species dispersal. Despite their importance for biodiversity conservation, Mexican tropical dry forests (TDFs) face high fragmentation rates due to anthropogenic activities. In this study, we analyzed the connectivity dynamics of TDFs in the Balsas Basin Biogeographic Province (BBBP) between 2013 and 2018, focusing on old-growth and secondary TDF covers, including Protected Areas and Important Bird Areas. We evaluated the effects of connectivity loss and gain on the distribution areas of 30 endemic bird species with ecological associations with TDFs in the BBBP. We found expansion in TDFs accounting for a total increase of 227,905 ha due to secondary forest increase (12%). In contrast, old-growth forests experienced a reduction of 66,576 ha in the study area (8%). We also found a decrease in areas with high and very-high connectivity, coupled with an increase in low connectivity, except for TDFs inside Protected Areas, which increased by 3,000 ha, leading to higher connectivity. There was an increase in total forest cover in 27 species’ potential distribution, highlighting the possible role of secondary forests in promoting connectivity between old-growth forest patches. Our results reveal the complex dynamics between forest types, connectivity, and bird-species distributions. Despite an overall increase in forested areas, most TDFs continue to have low connectivity, likely impacting biodiversity, particularly for species that rely on highly conserved ecosystems. This study underscores the importance of integrated conservation strategies considering connectivity, forest recovery, and the dynamics of species-ecosystem interactions.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3