A tale about vipers’ tails: phylogeography of black-tailed rattlesnakes

Author:

Muñoz-Mora Víctor Hugo,Suárez-Atilano Marco,Maltagliati Ferruccio,Ramírez-Corona Fabiola,Carbajal-Saucedo Alejandro,Percino-Daniel RuthORCID,Langeneck JoachimORCID,D’Addario MaristellaORCID,Sunny ArmandoORCID

Abstract

The phylogenetic relationships among black-tailed rattlesnakes remain poorly understood and some authors indicated that the diversity of this group has been underestimated and additional analyses are required to clarify the biogeographic patterns throughout its distribution in Mexico. Therefore, the aim of this study was to elucidate the phylogenetic relationships among black-tailed rattlesnakes across their range, identifying relative divergence times among the main clades and reconstructing the biogeographical history of the group. Three partial mitochondrial genes (ND4, cytb and ATPase6) and one nuclear gene (RAG1) were sequenced to infer the phylogenetic relationships, through the maximum likelihood and Bayesian inference-based methods; demographic history reconstruction was investigated through Bayesian Skyline plot analysis and the ancestral area reconstruction was carried out considering a Bayesian framework. We found strong evidence that the black-tailed rattlesnakes’ group is composed of six clades, which is in agreement with subspecies previously reported. Divergence time estimation indicated that the origin of the C. molossus group could be traced to the middle of the Miocene (~7.71 Mya). Ancestral area reconstruction indicated that early divergence events occurred in Central Mexico, probably related to the geological dynamics of the Trans-Mexican Volcanic Belt. The lineage C. m. oaxacus is the basal member of the C. molossus group. Furthermore, the combination of geological events and changes in Quaternary vegetation may have contributed to the divergence of C. molossus clades. Our results suggest several clades within C. molossus complex could be potentially recognized as separate species.

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3