Topological Similarity and Centrality Driven Hybrid Deep Learning for Temporal Link Prediction

Author:

Sserwadda AbubakhariORCID,Ozcan AlperORCID,Yaslan YusufORCID

Abstract

Several real-world phenomena, including social, communication, transportation, and biological networks, can be efficiently expressed as graphs. This enables the deployment of graph algorithms to infer information from such complex network interactions to enhance graph applications’ accuracy, including link prediction, node classification, and clustering. However, the large size and complexity of the network data limit the efficiency of the learning algorithms in making decisions from such graph datasets. To overcome these limitations, graph embedding techniques are usually adopted. However, many studies not only assume static networks but also pay less attention to preserving the network topological and centrality information, which information is key in analyzing networks. In order to fill these gaps, we propose a novel end-to-end unified Topological Similarity and Centrality driven Hybrid Deep Learning model for Temporal Link Prediction (TSC-TLP). First, we extract topological similarity and centrality-based features from the raw networks. Next, we systematically aggregate these topological and centrality features to act as inputs for the encoder. In addition, we leverage the long short-term memory (LSTM) layer to learn the underlying temporal information in the graph snapshots. Lastly, we impose topological similarity and centrality constraints on the model learning to enforce preserving of topological structure and node centrality role of the input graphs in the learned embeddings. The proposed TSC-TLP is tested on 3 real-world temporal social networks. On average, it exhibits a 4% improvement in link prediction accuracy and a 37% reduction in MSE on centrality prediction over the best benchmark.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3