Recommendation of Machine Learning Techniques for Software Effort Estimation using Multi-Criteria Decision Making

Author:

Kumar Ajay

Abstract

 For the development of the software industry, Software Effort Estimation (SEE) is one of the essential tasks. Project managers can overcome budget and time overrun issues by accurately estimating a software project's development effort in the software life cycle. In prior studies, a variety of machine learning methods for SEE modeling were applied. The outcomes for various performance or accuracy measures are inconclusive. Therefore, a mechanism for assessing machine learning approaches for SEE modeling in the context of several contradictory accuracy measures is desperately needed. This study addresses selecting the most appropriate machine learning technique for SEE modeling as a Multi-Criteria Decision Making (MCDM) problem. The machine learning techniques are selected through a novel approach based on MCDM. In the proposed approach, three MCDM methods- Weighted Aggregated Sum Product Assessment (WASPAS), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) were applied to determine the ranking of machine learning techniques on SEE performance based on multiple conflicting accuracy measures. For validating the proposed method, an experimental study was conducted over three SEE datasets using ten machine-learning techniques and six performance measures. Based on MCDM rankings, Random Forest, Support Vector Regression, and Kstar are recommended as the most appropriate machine learning techniques for SEE modeling. The results show how effectively the suggested MCDM-based approach can be used to recommend the appropriate machine learning technique for SEE modeling while considering various competing accuracy or performance measures altogether.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3