Predictive modelling of total operating room time for Laparoscopic Cholecystectomy using pre-operatively known indicators to guide accurate surgical scheduling in a critical access hospital

Author:

Prier Todd,Yale-Suda Kelly,Westover Hailey,Corey Ryan

Abstract

The financial margin of rural and critical access hospitals highly depends on their surgical volume. An efficient operating room is necessary to maximise profit and minimise financial loss. OR utilisation is a crucial OR efficiency metric requiring accurate case duration estimates. The patient's age, ASA, BMI, Mallampati score, previous surgery, the planned surgery, the surgeon, the assistant's level of experience and the severity of the patient's disease are also associated with operative duration. Although complex machine-learning models are accurate in operative prediction, they are not always available in resource-limited hospitals. Laparoscopic cholecystectomy (LC) is one of the most common surgical procedures performed and is one of the few procedures performed at critical access and rural hospitals. The accurate estimation of the operative duration of LC is essential for efficient OR utilisation. We hypothesise that a multivariate linear regression prediction model can be constructed from a set of pre-operatively known, easily collected variables to maximise OR utilisation and improve operative scheduling accuracy for LC. We further hypothesise that this model can be implemented in resource-limited environments, such as critical access hospitals.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3