The in vitro equivalence study of polymorph-modified glimepiride tablets compared to Amaryl®

Author:

Darusman FitriantiORCID,Rusdiana TaofikORCID,Sopyan IyanORCID,Aryani Ratih,Cahya Eka Darma Gita

Abstract

Glimepiride (GMP) is an oral antidiabetic drug classified as BCS class II, demonstrating extremely limited solubility, with a solubility level below 0.00384 mg/mL. Some generic drug manufacturers producing GMP (copy product) tablets encountered bioavailability issues due to poor dissolution, which did not meet the requirements. Therefore, measures were taken to enhance solubility through the modification of polymorphs. It is known that GMP exists in two polymorphic forms, namely Form I and an alternative Form II, which exhibits higher solubility in water. This study aims to produce and characterize the polymorph-modified GMP compared to non-modified GMP, develop an optimal formulation for polymorph-modified GMP tablets that adhere to pharmaceutical requirements as a representative copy drug model, and determine its similarity factor to Amaryl® as the innovator. The research methodology involved initiating the study by examining the polymorph transformation of GMP through the utilization of techniques such as neat grinding, solvent drop grinding, and solvent evaporation. The resulting samples were characterized using DSC, PXRD, and SEM analysis. The performance assessment encompassed the evaluation of flow properties, compressibility index, solubility, and dissolution rate compared to the non-modified GMP. Based on the characterization results, the best polymorph-modified GMP sample was used to produce a tablet formulation containing 4 mg of GMP using the direct compression method as a copy tablet model. In vitro equivalence testing was performed using a comparative dissolution test on the polymorph-modified GMP tablet compared to its innovator, Amaryl® 4 mg, in three different dissolution media, followed by determining the equivalence status using the similarity factor (f2) calculation. Based on the screening results of polymorph transformation, it was determined that the polymorph-modified GMP, using all three techniques, did not undergo a transition from Form I to Form II. Instead, it underwent amorphization, primarily observed in the solvent evaporation technique. Tablets containing polymorph-modified GMP using the solvent evaporation technique were able to enhance the in vitro dissolution rate profile compared to non-modified GMP tablets. The f2 values for the comparative in vitro dissolution test in acetate buffer pH 4.5 and phosphate buffer pH 6.8 were 60.15 ± 0.27 and 88 ± 0.35, respectively within acceptance criteria of 50–100. However, in KCl/HCl buffer pH 1.2, the f2 value was 45.15 ± 0.23. It was concluded that the polymorph-modified GMP tablet was not similar to its innovator, Amaryl®.

Publisher

Pensoft Publishers

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacy

Reference23 articles.

1. Formulation and biological evaluation of glimepiride–cyclodextrin–polymer systems

2. Inclusion complexation of glimipride in dimethyl-β-cyclodextrin.;Ammar;Inclusion Complexation of Glimepiride/Asian Journal of Pharmaceutical Sciences,2007

3. A Discriminating Dissolution Method for Glimepiride Polymorphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3