A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: synthesis, docking study, and anticancer activity

Author:

Abbas Ali H.ORCID,Mahmood Ammar A. RazzakORCID,Tahtamouni Lubna H.,Al-Mazaydeh Zainab A.,Rammaha Majdoleen S.,Alsoubani Fatima,Al-bayati Rheda I.

Abstract

Thirteen new derivatives of picolinic acid (4–7) were designed and synthesized from the starting parent molecule, picolinic acid. The new compounds were characterized by ATR-FTIR, 1HNMR, and CHNS analysis. A molecular docking study was performed to evaluate the binding affinity of the synthesized compounds toward EGFR kinase domain that indicated occupation of the critical site of EGFR kinase pocket and excellent positioning of the compounds in the pocket. The cytotoxic activity of the compounds against two human cancer cell lines (A549 and MCF-7), the non-tumorigenic MCF10A cell line, and white blood cells (WBC) was evaluated using the MTT assay. Compound 5 showed anticancer activity against A549 lung cancer cells (IC50 = 99.93 µM) but not against MCF-7 breast cancer cells or normal cells. Compound 5 mediated cytotoxicity in A549 lung cancer cells by inducing apoptotic cell death, as suggested by fragmented nuclei after DAPI staining, and agarose gel electrophoresis. Moreover, compound 5 triggered the activation of caspases 3, 4 and 9. However, compound 5 treatment did not affect the release of cytochrome c from the mitochondria to the cytosol, as compared to the vehicle-treated control cells. Nevertheless, compound 5-treated cells reported greater release of smac/DIABLO to the cytosol. In the same context, both compound 5 and thapsigargin (specific inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)) enhanced eIF2 phosphorylation, reflecting the activation of the atypical ER stress pathway and the potential applicability of compound 5 in lung cancer treatment.

Publisher

Pensoft Publishers

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3