Effect of oxidation and crosslinking on functional, rheological and thermal properties of oat and apple starches

Author:

Sida-Arreola Juan PedroORCID,Zamudio-Flores Paul BarukORCID,Calderón-Loera Rogelio,Espinosa-Solis VicenteORCID,Vela-Gutiérrez GilberORCID,Pacheco-Vargas GlendaORCID,Sáenz-Mendoza Alma IvethORCID,Hernández-González MaríaORCID,López-De la Peña Haydee YajairaORCID,Aparicio-Saguilán AlejandroORCID,Castro-Mendoza Marisol PatriciaORCID,Ortega-Ortega AdalbertoORCID

Abstract

Oat (Oa) and apple (Ap) starches were isolated and chemically modified by oxidation with 10% NaOCl to obtain oxidized starches (OOa and OAp), followed by cross-linking with a mixture of 5.6 g of sodium tripolyphosphate and 11 g of sodium trimetaphosphate to obtain doubly modified starches (OCOa and OCAp). In the native and modified starches, the functional properties (swelling power and solubility, and freeze-thaw stability) and thermal and rheological properties (steady-state flow curves and paste formation profile) were evaluated. The swelling power of native and double modified starches varied from 57 to 86 g/g and the solubility from 0.8 to 6.0 g/100 g, these variables increased as the study temperature increased; the increment in these properties was greater in Oa compared to Ap. Oxidation followed by crosslinking increased the freeze-thaw stability in Oa and Ap starches at 30, 60, 75, and 90 °C. It also increased the Tg of OCAp and OCOa ≈ 9% compared to the native samples, respectively; while an inverse pattern was observed in apparent viscosity were this value decreased ≈ 0.8 Pa × s for Oa and ≈ 0.5 Pa × s for Ap compared to the double modified samples. All samples presented a thinning cut-type behavior (pseudoplastic), indicating structural differences. Cross-linking in oxidized starches produced a reinforcing matrix that was determined in the paste formation profile. Dual modification (oxidation-cross-linking) could be an alternative for using starches from underused botanical sources, such as apples and oats, with different functional properties and feasible applications in food systems.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3