A localization method for loose parts monitoring system of VVER reactor plants

Author:

Maksimov Ivan V.,Perevezentsev Vladimir V.

Abstract

As operational experience shows, it can hardly be excluded that some detached or loosened parts and even foreign objects (hereinafter referred to as the ‘loose parts’) may appear in the main circulation loop of VVER reactor plants. Naturally, the sooner such incidents are detected and evaluated, the more time will be available to eliminate or at least minimize damage to the reactor plant main equipment. The paper describes a method for localizing the impact of loose parts located in the coolant circulation circuit of a VVER reactor plant. To diagnose malfunctions of the reactor plant main equipment, it is necessary to accurately determine the place where the acoustic anomaly occurred. Therefore, if some loose parts make themselves felt, it is important to track the path of their movement along the main circulation circuit as well as their location using physical barriers. The method is based on the representation of the surface, along which an acoustic wave travels, as a 3D model of the reactor plant (RP) main circulation circuit. The model has the form of a graph in which the vertices characterize the control points on the RP surface and the edges are the distances between them. The method uses information about the acoustic wave velocity and the time difference of arrivals (TDOAs) of the signal received by various sensors. It is shown that, when the effect is received by more than three sensors, along with an estimate of the impact coordinate, it becomes possible to estimate the average acoustic wave velocity. To determine time of arrival, the signal dispersion change point detection method is used. Provided that the average size between the control points on the RP surface was 300 mm, the average localization error was about 600 mm. The developed algorithm can be easily adapted to any VVER reactor plant. The obtained deviation values are acceptable for practical use.

Publisher

Pensoft Publishers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3