Spatial and temporal variation of epigaeic beetle assemblages (Coleoptera, Carabidae, Staphylinidae) in aspen-dominated mixedwood forests across north-central Alberta

Author:

Hammond H. E. JamesORCID,García-Tejero Sergio,Pohl Greg R.,Langor David W.,Spence John R.

Abstract

Epigaeic beetle assemblages were surveyed using continuous pitfall trapping during the summers of 1992 and 1993 in six widely geographically distributed locations in Alberta’s aspen-mixedwood forests prior to initial forest harvest. Species composition and turnover (β-diversity) were evaluated on several spatial scales ranging from Natural Regions (distance between samples 120–420 km) to pitfall traps (40–60 m). A total of 19,885 ground beetles (Carabidae) representing 40 species and 12,669 rove beetles (non-AleocharinaeStaphylinidae) representing 78 species was collected. Beetle catch, species richness, and diversity differed significantly among the six locations, as did the identity of dominant species. Beetle species composition differed significantly between the Boreal Forest and Foothills Natural Regions for both taxa. Staphylinidae β-diversity differed significantly between Natural Regions, whereas Carabidae β-diversity differed among locations. Climate variables such as number of frost-free days, dry periods, and mean summer temperatures were identified as significant factors influencing beetle assemblages at coarse spatial scales, whereas over- and understory vegetation cover, litter depth, shade, slope, and stand age influenced beetle assemblages at finer spatial scales. Significant interannual variation in assemblage structure was noted for both taxa. Because composition of epigaeic beetle assemblages differed across spatial scales, forest management strategies based only on generalized understanding of a single location will be ineffective as conservation measures. In addition, site history and geographic variation significantly affect species distributions of these two beetle families across the landscape. Thus, we underscore Terry Erwin’s suggestion that biodiversity assessments focused on species assemblages at different spatial scales provide a sound approach for understanding biodiversity change and enhancing conservation of arthropod biodiversity.

Funder

Natural Resources Canada

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3