Characterization of the complete mitochondrial genome of the longhorn beetle, Batocera horsfieldi (Coleoptera, Cerambycidae) and its phylogenetic analysis with suitable longhorn beetles

Author:

Wu Junhao,Xu Danping,Wei Xinju,Liao Wenkai,Li Xiushan,Zhuo ZhihangORCID

Abstract

Mitochondrial genome analysis is an important tool for studying insect phylogenetics. The longhorn beetle, Batocera horsfieldi, is a significant pest in timber, economic and protection forests. This study determined the mitochondrial genome of B. horsfieldi and compared it with the mitochondrial genomes of other Cerambycidae with the aim of exploring the phylogenetic status of the pest and the evolutionary relationships among some Cerambycidae subgroups. The complete mitochondrial genome of B. horsfieldi was sequenced by the Illumina HiSeq platform. The mitochondrial genome was aligned and compared with the existing mitochondrial genomes of Batocera lineolata and B. rubus in GenBank (MF521888, MW629558, OM161963, respectively). The secondary structure of transfer RNA (tRNA) was predicted using tRNAScan-SE server v.1.21 and MITOS WebSever. Thirteen protein-coding genes (PCGs) and two ribosomal RNA gene sequences of 21 longhorn beetles, including B. horsfieldi, plus two outgroups, Dryops ernesti (Dryopidae) and Heterocerus parallelus (Heteroceridae), were analyzed. The phylogenetic tree was constructed using maximum likelihood and Bayesian inference methods. In this study, we successfully obtained the complete mitochondrial genome of B. horsfieldi for the first time, which is 15 425 bp in length. It contains 37 genes and an A + T-rich region, arranged in the same order as the recognized ancestor of longhorn beetles. The genome of B. horsfieldi is composed of 33.12% A bases, 41.64% T bases, 12.08% C bases, and 13.16% G bases. The structure, nucleotide composition, and codon usage of the new mitochondrial genome are not significantly different from other longhorn mitochondrial genomes. Phylogenetic analyses revealed that Cerambycidae formed a highly supported single clade, and Vesperidae was either clustered with Cerambycidae or formed a separate clade. Interestingly, B. horsfieldi, B. rubus and B. lineolata were clustered with Monochamus and Anoplophora species in both analyses, with high node support. Additionally, the VesperidaeSpiniphilus spinicornis and Vesperus sanzi and the 19 Cerambycidae species formed a sister clade in the Bayesian analysis. Our results have produced new complete mitogenomic data, which will provide information for future phylogenetic and taxonomic research, and provide a foundation for future relevant research.

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3