Interspecific variation in responses to microclimate by terrestrial isopods: implications in relation to climate change

Author:

Hassall Mark,Moss Anna,Dixie Bernice,Gilroy James J.

Abstract

The importance of considering species-specific biotic interactions when predicting feedbacks between the effects of climate change and ecosystem functions is becoming widely recognised. The responses of soil animals to predicted changes in global climate could potentially have far-reaching consequences for fluxes of soil carbon, including climatic feedbacks resulting from increased emissions of carbon dioxide from soils. The responses of soil animals to different microclimates can be summarised as norms of reaction, in order to compare phenotypic differences in traits along environmental gradients. Thermal and moisture reaction norms for physiological, behavioural and life history traits of species of terrestrial isopods differing in their morphological adaptations for reducing water loss are presented. Gradients of moisture reaction norms for respiratory rates and thermal reaction norms for water loss, for a species from the littoral zone were steeper than those for species from mesic environments. Those for mesic species were steeper than for those from xeric habitats. Within mesic species, gradients of thermal reaction norms for aggregation were steeper for Oniscusasellus than for Porcellioscaber or Armadilliumvulgare, and moisture reaction norms for sheltering and feeding behaviours were steeper for Philosciamuscorum than for either P.scaber or A.vulgare. These differences reflect differences in body shape, permeability of the cuticle, and development of pleopodal lungs. The implications of differences between different species of soil animals in response to microclimate on the possible influence of the soil fauna on soil carbon dynamics under future climates are discussed. In conclusion a modelling approach to bridging the inter-disciplinary gap between carbon cycling and the biology of soil animals is recommended.

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3