Observations of the foraging behavior and activity patterns of the Korean wood mouse, Apodemus peninsulae, in China, using infra-red cameras

Author:

Li DianweiORCID,Hao Jingwei,Yao Xu,Liu Yang,Peng Ting,Jin Zhimin,Meng Fanxing

Abstract

Apodemus peninsulae, a dominant rodent species in temperature forests of northeastern China, is a model animal to explore the ecological functions of reciprocal coevolution of animals and plants. From August to October 2016, 24 infra-red cameras were installed to study the feeding behavior and activity patterns of A. peninsulae in its natural environment. By analyzing 5618 video records, we found that feeding behavior, followed by motor and sentinel behaviors, was their main activity. In the behavior spectra, motor behavior (creep, walk, and skip), feeding behavior (forage, feeding, transport, hoarding, and clean), and sentinel behavior (alert, flee, banishment, and coexistence) accounted for 57.96%, 40.36%, and 1.68% of their behavior, respectively. The peak of feeding behavior occurred between 18:00 and 23:00, and feeding behavior frequency, duration, and activity rhythms differ among August to October. Furthermore, activity was the greatest after sunset and before sunrise, indicating a nocturnal lifestyle; however, from August to October, the start time of the activity was earlier, and the end time was later than usual. On average, mice spent 21.6 ± 11.6 times/night feeding, with a duration of 63.58 ± 98.36 s; while they spent less time in foraging, 39.05 ± 51.63 s. We found a significant difference in feeding and foraging frequency, with mice spending on average 10.84 ± 9.85 times/night and 9.23 ± 11.17 times/night, respectively. Our results show that feeding and foraging behavior is also influenced by light intensity, suggesting a preference for crepuscular periods of the day. Infra-red cameras are very useful in detecting activity patterns of animals that are not easily observable; these cameras are able to capture a large amount of valuable information for research into ecological functions.

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3