What shapes ground beetle assemblages in a tree species-rich subtropical forest?

Author:

Zumstein PascaleORCID,Bruelheide Helge,Fichtner Andreas,Schuldt Andreas,Staab MichaelORCID,Härdtle Werner,Zhou Hongzhang,Assmann ThorstenORCID

Abstract

As woody plants provide much of the trophic basis for food webs in forests their species richness, but also stand age and numerous further variables such as vegetation structure, soil properties and elevation can shape assemblages of ground beetles (Coleoptera: Carabidae). However, the combined impact of these numerous variables on ground beetle diversity and community structure has rarely been studied simultaneously. Therefore, ground beetles were studied in 27 plots in a highly diverse and structurally heterogeneous subtropical forest ecosystem, the Gutianshan National Park (southeast China) using pitfall traps and flight interception traps. Both trapping methods collected partly overlapping species spectra. The arboreal fauna was dominated by lebiines and to a smaller extent by tiger beetles and platynines; the epigeic fauna comprised mostly representatives of the genus Carabus and numerous tribes, especially anisodactylines, pterostichines, and sphodrines. Ground beetle species richness, abundance, and biomass of the pitfall trap catches were analyzed with generalized linear mixed models (GLMMs), fitted with seven environmental variables. Four of these variables influenced the ground beetle assemblages: Canopy cover, herb cover, pH-value of the topsoil and elevation. Contrary to our expectations, woody plant species richness and stand age did not significantly affect ground beetle assemblages. Thus, ground beetles seem to respond differently to environmental variables than ants and spiders, two other predominantly predatory arthropod groups that were studied on the same plots in our study area and which showed distinct relationships with woody plant richness. Our results highlight the need to study a wider range of taxa to achieve a better understanding of how environmental changes affect species assemblages and their functioning in forest ecosystems.

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3