Geometric morphometric analysis of the pronotum and elytron in stag beetles: insight into its diversity and evolution

Author:

Zhang Mengna,Ruan Yongying,Wan Xia,Tong Yijie,Yang Xingke,Bai Ming

Abstract

Stag beetles (Coleoptera, Scarabaeoidea, Lucanidae) have received extensive attention from researchers in behavioral ecology and evolutionary biology. There have been no previous quantitative analyses, particularly using a geometric morphometric approach based on a large sample of data, to shed light on the morphological diversity and evolution of Lucanidae. Thoracic adaptation and ecological differentiation are intimately related, and the pronotum bears important muscles and supports the locomotion of prothoracic legs. The elytron is an autapomorphy of the Coleoptera. To reconstruct and visualize the patterns of evolutionary diversification and phylogenetic history of shape change, an ancestral groundplan can be reconstructed by mapping geometric morphometric data onto a phylogenetic tree. In this study, the morphologies of the pronotum and elytron in 1303 stag beetles (Lucanidae), including approximately 99.2% of all globally described species, were examined, thus revealing several aspects of morphological diversity and evolution. First, on the basis of geometric morphometric analysis, we found significant morphological differences in the pronotum or elytron between any two Lucanidae subfamilies. And we subsequently reconstructed the ancestral groundplans of the two structures in stag beetles and compared them with those of extant species (through cladistic and geometric morphometric methods). The ancestral groundplan of Lucanidae was found to be most similar to extant Nicagini in both the pronotum and elytron, according to Mahalanobis distances. Furthermore, we analyzed species richness and morphological diversity of stag beetles and the relationships between them and found that the two parameters were not always correlated. Aesalinae was found to be the most diverse subfamily in both the pronotum and elytron, despite its poor species richness, and the diversity of the pronotum or elytron was not superior in Lucaninae, despite its high species richness. Our study provides insights into the morphological variations and evolutionary history of the pronotum and elytron in four subfamilies of stag beetles, and it illuminates the relationship between morphological diversity and species richness. Intriguingly, our analysis indicates that morphological diversity and species richness are not always correlated. These findings may stimulate further studies in this field.

Funder

National Natural Science Foundation of China

Publisher

Pensoft Publishers

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3