Minor actinides transmutation in equilibrium cores of next generation FRs

Author:

Egorov Alexander V.,Khomyakov Yurii S.,Rachkov Valerii I.,Rodina Elena A.,Suslov Igor R.

Abstract

The Russian Federation is developing a number of technologies within the «Proryv» project for closing the nuclear fuel cycle utilizing mixed (U-Pu-MA) nitride fuel. Key objectives of the project include improving fast reactor nuclear safety by minimizing reactivity changes during fuel operating period and improving radiological and environmental fuel cycle safety through Pu multi-recycling and МА transmutation. This advanced technology is expected to allow operating the reactor in an equilibrium cycle with a breeding ratio equaling approximately 1 with stable reactivity and fuel isotopic composition. Nevertheless, to reach this state the reactor must still operate in an initial transient state for a lengthy period (over 10 years) of time, which requires implementing special measures concerning reactivity control. The results obtained from calculations show the possibility of achieving a synergetic effect from combining two objectives. Using МА reprocessed from thermal reactor spent fuel in initial fuel loads in FR ensures a minimal reactivity margin during the entire fast reactor fuel operating period, comparable to the levels achieved in equilibrium state with any kind of relevant Pu isotopic composition. This should be combined with using reactivity compensators in the first fuel micro-campaigns. In the paper presented are the results of simulation of the overall life cycle of a 1200 MWe fast reactor, reaching equilibrium fuel composition, and respective changes in spent fuel nuclide and isotopic composition. It is shown that МА from thermal and fast reactors spent fuel can be completely utilized in the new generation FRs without using special actinide burners.

Publisher

Pensoft Publishers

Subject

General Medicine

Reference7 articles.

1. Nuclear energy with inherent safety: Change of outdated paradigm, criteria

2. Comparative analysis of advantages and drawbacks related to the use of metal and mixed uranium-plutonium nitride fuel in fast reactors. Proceedings of the Russian Academy of Sciences.;Adamov;Power Engineering,2015b

3. Radiation-equivalent circulation of radioactive nuclides in nuclear fuel cycle – effective alternative to the deferred solution of the problem of accumulation of spent nuclear fuel. Proceedings of the Russian Academy of Sciences.;Adamov;Power Engineering,2015c

4. New Technological Platform for the National Nuclear Energy Strategy Development

5. A comparison of curium, neptunium and americium transmutation feasibility

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3