Test bench for gas-dynamic studies in the furnace channel for nuclear fuel pellet sintering *

Author:

Kuzmin Ilya V.,Leshchenko Anton Yu.,Pavlov Sergey V.,Shamsutdinov Rinat N.,Mochalov Yuriy S.

Abstract

Nuclear fuel pellets are sintered in high-temperature furnaces in an atmosphere with strictly defined requirements for the composition of the gas environments in the furnace’s different temperature zones. The preset process conditions in the mixed nitride uranium-plutonium (MNUP) fuel pellet sintering furnace is achieved through the respective gas supply arrangement and by the design of the barriers between the temperature zones and that of the gas supply and discharge units. A CFD model was created in the Ansys Fluent package and validated for testing the functionality of the design concepts used to develop the MNUP fuel sintering furnace channel. A mockup of the sintering furnace channel, which makes a part of the gas-dynamic test bench, was developed and fabricated for the analytical model validation. The paper presents a description of the test bench design and performance for measuring the concentration of gases in the channel simulating the nitride nuclear fuel sintering furnace channel. The results of the test bench gas-dynamic studies were used for the computational and experimental justification of the approaches used to develop the sintering furnace channel. The functionality of the barriers for the sintering furnace channel division into zones with the preset composition of the gas environments and the gas supply and discharge units has been tested experimentally. The obtained experimental data on the distribution of the process gas concentration makes it possible to validate computational thermophysical and gas-dynamic CFD models of the MNUP fuel sintering furnace channel.

Publisher

Pensoft Publishers

Subject

General Medicine

Reference20 articles.

1. A comparative study into the advantages and disadvantages of using metal and mixed nitride uranium-plutonium fuel in fast reactors. Izvestiya Rossiyskoy akademii nauk.;Adamov;Energetika,2015

2. Fabrication of (U, Pu)N fuel pellets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3