Development of accurate chemical thermodynamic database for geochemical storage of nuclear waste. Part III: Models for predicting solution properties and solid-liquid equilibrium in cesium binary and mixed systems

Author:

Tsenov Tsvetan,Donchev Stanislav,Christov Christomir

Abstract

The models described in this study are of high importance in the development of thermodynamic database needed for nuclear waste geochemical storage as well as for technology for extracting cesium resources from saline waters. In this study we developed new not concentration restricted thermodynamic models for solution behavior and solid-liquid equilibrium in CsF-H2O CsOH-H2O and Cs2SO4-H2O systems at 25 °C. To parameterize models we used all available experimental osmotic coefficients data for whole concentration range of solutions and up to saturation point. The new models are developed on the basis of Pitzer ion interactions approach. The predictions of new developed here models are in excellent agreement with experimental osmotic coefficients data (ϕ) in binary solutions from low to extremely high concentration (up to 21.8 mol.kg-1 for CsOH-H2O and up to 35.6 mol.kg-1 for CsF-H2O). The previously developed by Christov by Christov and co-authors and by other authors Pitzer approach based thermodynamic models for five (5) cesium binary systems (CsCl-H2O CsBr- H2O CsI-H2O CsNO3-H2O and Cs2SeO4- H2O) are tested by comparison with experimental osmotic coefficients data and with recommendations on activity coefficients (γ±) in binary solutions. The models which give the best agreement with (ϕ)- and (γ±) -data from low to high concentration up to m(sat) are accepted as correct models which can be used for solubility calculations in binary and mixed systems and determination of thermodynamic properties of precipitating cesium solid phases. The thermodynamic solubility products (ln Kosp) and the Deliquescence Relative Humidity (DRH) of solid phases precipitating from saturated cesium binary solutions (CsF(cr) CsCl(cr) CsBr(cr) CsI(cr) CsOH(cr) CsNO3(cr) Cs2SO4(cr) and Cs2SeO4(cr)) have been determined on the basis of evaluated and accepted binary parameters and using experimental solubility data. The reported mixing parameters [θ(Cs M2+) and ψ(Cs M2+ X)] evaluated by solubility approach for 15 cesium mixed ternary systems (CsCl-MgCl2-H2O CsBr-MgBr2-H2O CsCl-NiCl2-H2O CsBr-NiBr2-H2O CsCl-MnCl2-H2O CsCl-CoCl2-H2O CsCl-CuCl2-H2O CsCl-CsBr-H2O CsCl-RbCl-H2O Cs2SO4-CoSO4-H2O Cs2SeO4-CoSeO4-H2O Cs2SO4-NiSO4-H2O Cs2SeO4-NiSeO4-H2O Cs2SO4-ZnSO4-H2O and Cs2SeO4-ZnSeO4-H2O) are tabulated.

Publisher

Pensoft Publishers

Subject

Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3