Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon model complex lipids

Author:

Ciesielski Wojciech,Kołoczek Henryk,Oszczęda Zdzisław,Oszczęda Wiktor,Soroka Jacek A.,Tomasik Piotr

Abstract

Background: Recognising effects of static magnetic field (SMF) of varying flux density on flora and fauna is attempted. For this purpose, the influence of static magnetic field is studied for molecules of five complex lipids i.e. such as β-carotene, sphingosine, ceramide, cholesterol and phosphatidylcholine. Methods: Computations of the effect of real SMF 0.0, 0.1, 1, 10 and 100 AMFU (Arbitrary Magnetic Field Unit; here 1AMFU > 1000 T) flux density were performed in silico (computer vacuum), involving advanced computational methods. Results: SMF polarises molecules depending on applied flux density. Only β-carotene survives exposure to SMF of 10 and 100 AMFU without radical splitting of some valence bonds. Molecules of remaining lipids suffered radical cleavage of some bonds on exposure to SMF of 10 and 100 AMFU. Manipulation with applied flux density provides either inhibition or stimulation of biological functions of the lipids under study. Conclusions: SMF destabilises complex lipids to the extent depending applied flux density. Biological functions of β-carotene are fairly sensitive to SMF, whereas only slight response to the effect of SMF is observed in case of sphingosine, ceramide and cholesterol. Enzymatic hydrolysis of phosphatidylcholine is stimulated by SMF regardless of the catalysed enzyme employed.

Publisher

Pensoft Publishers

Subject

Environmental Science (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Animal Science and Zoology,Insect Science,Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3