Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon fatty acids and their glycerides

Author:

Ciesielski Wojciech,Kołoczek Henryk,Oszczęda Zdzisław,Soroka Jacek A.,Tomasik Piotr

Abstract

Background: We attempt to recognise the effects of static magnetic field (SMF) of varying flux density on flora and fauna. For this purpose, the influence of static magnetic field is studied for molecules of octadecanoic (stearic), cis-octadec-9-enoic (oleic), cis,cis-octadec-9,12-dienoic (linoleic), all cis-octadec-6,9.12-trienoic (linolenic), trans-octadec-9-enoic – (elaidic), cis-octadec-11-enoic (vaccenic) and all trans-octadec-6,9,12-trienoic (trans-linolenic) acids as well as 1- and 2-caproyl monoglycerides, 1,2- and 1,3-caproyl diglycerides and 1,2,3-caproyl triglyceride. In such a manner we attempt to develop an understanding of the interactions of living cells with SMF on a molecular level. Methods: Computations of the effect of real SMF 0.0, 0.1, 1, 10 and 100 AMFU (Arbitrary Magnetic Field Unit; here 1AMFU > 1000 T) flux density were performed in silico (computer vacuum), involving advanced computational methods. Results: SMF polarises molecules depending on applied flux density It neither ionises nor breaks valence bonds at 0.1 and 1 AMFU. In some molecules under consideration flux density of 10 and 100AMFU some C-H and C-C bonds were broken. Some irregularities were observed in the changes of positive and negative charge densities and bond lengths against increasing flux density. They provide evidence that molecules slightly change their initially fixed positions with respect to the force lines of the magnetic field. The length of some bonds and bond angles change with an increase in the applied flux density providing, in some cases, polar interactions between atoms through space. Conclusions: SMF destabilizes lipid acids and caproyl glycerides irregularly against increasing flux density. That irregularity results from the ability of those molecules to twist out of the initially established SMF plain and squeeze molecules around some bonds. In some molecules SMF flux density of 10 AMFU and above breaks some valence bonds and only in case of elaidic acid the trans-cis conversion is observed. Depending on the structure and applied flux density SMF either stimulates or inhibits metabolic processes of the lipids under study.

Publisher

Pensoft Publishers

Subject

Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3