Author:
Seok Jiyoon,Jung Suhan,Han Ye Gi,Park Arum,Kim Jung Eun,Song Young Jo,Yu Chi Ho,Yun Hyeongseok,Gu Se Hun,Lee Seung-Ho,Lee Yong Han,Hur Gyeunghaeng,Choi Woong
Abstract
The COVID-19 pandemic is not over despite the emergency use authorization as can see recent COVID-19 daily confirmed cases. The viruses are not only difficult to diagnose and treat due to random mutations, but also pose threat human being because they have the potential to be exploited as biochemical weapons by genetic manipulation. Therefore, it is inevitable to the rapid antibody-based therapeutic platform to quickly respond to future pandemics by new/re-emerging viruses.Although numerous researches have been conducted for the fast development of antibody-based therapeutics, it is sometimes hard to respond rapidly to new viruses because of complicated expression or purification processes for antibody production. In this study, a novel rapid antibody-based therapeutic platform using single B cell sorting method and mRNA-antibody. High immunogenicity was caused to produce antibodies in vivo through mRNA-antigen inoculation. Subsequently, antigen-specific antibody candidates were selected and obtained using isolation of B cells containing antibody at the single cell level. Using the antibody-based therapeutic platform system in this study, it was confirmed that novel antigen-specific antibodies could be obtained in about 40 days, and suggested that the possibility of rapid response to new variant viruses.
Funder
Agency for Defense Development
Publisher
The Korea Institute of Military Science and Technology