Repeated K-means Clustering Algorithm For Radar Sorting

Author:

ParK Dong Hyun,Seo Dong-ho,Baek Jee-hyeon,Lee Won-jin,Chang Dong Eui

Abstract

In modern electronic warfare, a number of radar emitters are in operation, causing radar receivers to receive high-density signal pulses that occur simultaneously. To analyze the radar signals more accurately and identify enemies, the sorting process of high-density radar signals is very important before analysis. Recently, machine learning algorithms, specifically K-means clustering, are the subject of research aimed at improving the accuracy of radar signal sorting. One of the challenges faced by these studies is that the clustering results can vary depending on how the initial points are selected and how many clusters number are set. This paper introduces a repeated K-means clustering algorithm that aims to accurately cluster all data by identifying and addressing false clusters in the radar sorting problem. To verify the performance of the proposed algorithm, experiments are conducted by applying it to simulated signals that are generated by a signal generator.

Funder

LIG Nex1

Publisher

The Korea Institute of Military Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3