Author:
Nam Juyeong,Chang Injoong,Park Kyungsu,Cho Hyung Hee
Abstract
Infrared guided weapons act as threats that greatly degrade the survivability of combat aircraft. Infrared weapons detect and track the target aircraft by sensing the infrared signature radiated from the aircraft fuselage. Therefore, in this study, we analyzed the infrared signature and susceptibility of supersonic aircraft according to omni-directional detection angle. Through the numerical analysis, we derived the surface temperature distribution of fuselage and omni-directional infrared signature. Then, we calculated the detection range according to detection angle in consideration of IR sensor’s parameters. Using in-house code, the lethal range was calculated by considering the relative velocity between aircraft and IR missile. As a result, the elevational susceptibility is larger than the azimuthal susceptibility, and it means that the aircraft can be attacked in wider area at the elevational situation.
Funder
Defense Acquisition Program Administration
Agency for Defense Development
Publisher
The Korea Institute of Military Science and Technology