Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method

Author:

GÜL MernuşORCID,KAMER Muhammed Safa1ORCID,ALIÇ Erdem2ORCID

Affiliation:

1. KAHRAMANMARAS SUTCU IMAM UNIVERSITY

2. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

In this study, the effect of the phase angle of the semicircular blades between the stages on the aerodynamic performance of the three-blade, double-stage helical Savonius wind turbines (HSWT), which are vertical axis wind turbines, was examined by the computational fluid dynamics (CFD) method. In the Savonius wind turbine system, the drag force effect provides the most significant contribution to aerodynamic performance. Performance improvements that can affect drag force can provide significant advantages. For this purpose, three-bladed double-stage helical Savonius rotors with eccentricity L/H=1/2 and phase angles of the semicircular blades between the stages Ɵ=0°, 45° and 90° were designed. Solidworks R2018 is used for designs and ANSYS-Fluent 18.1 programs are used for analysis. The turbine with L/H=1/2 and Ɵ=90° was produced on a 3D printer and tested experimentally. Experiments were carried out in the T-490 air tunnel. The results obtained were used as a reference for numerical analysis and the ideal turbine model was tried to be determined. 10 different air velocities ranging between 3.83-20.35 m/s were used in the numerical analysis. As a result, an 11.64% increase in the drag force was observed by changing the phase angle from 0° to 45° in HSWT 1/2s. By changing the phase angle from 0° to 45° in HSWT 1/2s, a 10.77% rise in the drag coefficient was observed. It has been evaluated that the HSWT efficiency improved with the increment in drag force.

Publisher

Fırat University, Faculty of Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3