Progress in Natural Language Processing Technologies: Regulating Quality and Accessibility of Training Data

Author:

Ilyin IlyaORCID

Abstract

Progress in natural language processing technologies (NLP) is a cardinal factor of major socioeconomic importance behind innovative digital products. However, inadequate legal regulation of quality and accessibility of training data is a major obstacle to this technological development. The paper is focused on regulatory issues affecting the quality and accessibility of data needed for language model training. In analyzing the normative barriers and proposing ways to remove them, the author of the paper argues for the need to develop a comprehensive regulatory system designed to ensure sustainable development of the technology.

Publisher

National Research University, Higher School of Economics (HSE)

Reference23 articles.

1. Dash N.S., Arulmozi S. (2018) History, features, and typology of language corpora. Singapore: Springer, p. 291.

2. Feng Z. (2023) Formal analysis for natural language processing: a handbook. Berlin: Springer Nature, pp. 7,8, 25.

3. Gavrilov E.P. (2009) Copyright and the content of artistic work. Patenty i litsenzii=Patents and Licenses, no. 7, pp. 31–38 (in Russ.)

4. Glauner P. (2024) Technical foundations of generative AI models. Legal Tech — Zeitschrift für die digitale Anwendung, pp. 24–34.

5. Goldberg Y. (2017) Features for textual data. In: Neural network methods for natural language processing. Cham: Springer, pp. 65–76.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3