Application of measures of heavy-tailedness in problems for analysis of financial time series

Author:

Rodionova LiliaORCID,Kopnova ElenaORCID

Abstract

An important feature when working with financial data is the fact that the residuals of GARCH-models often have fatter tails than the tails of a normal distribution due to the large number of “outliers” in the data. This requires more detailed study. Kurtosis and quantile-based measure of heavy-tailedness were analyzed and compared in the article in relation to the problem of choosing the GARCH(1,1)-model specification. The data of indices of the Moscow Exchange were considered for the period from April 01, 2019 to February 22, 2022. Kurtosis values ​​ranged from 3 to 52. Empirical data showed that kurtosis was very sensitive to “outliers” in the data, which made it difficult to make assumptions about the distribution of model residuals. The approach considered in this paper based on the heavy-tailedness measure made it possible to justify the choice of degrees of freedom of the t-distribution for the model residuals to explain the fat tails in financial data. It was found that GARCH(1,1)-models with t(5)-distribution in the residuals are common.

Publisher

National Research University, Higher School of Economics (HSE)

Subject

Management of Technology and Innovation,Economics and Econometrics,Information Systems,Business and International Management,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3