Short-term forecasting of electricity prices using generative neural networks

Author:

Kaukin AndrejORCID,Pavlov PavelORCID,Kosarev VladimirORCID

Abstract

This article studies the predictive abilities of the generative-adversarial neural network approach in relation to time series using the example of price forecasting for the nodes of the Russian free electricity market for the day ahead. As a result of a series of experiments, we came to the conclusion that a generative adversarial network, consisting of two models (generator and discriminator), allows one to achieve a minimum of the error function with a greater generalizing ability than, all other things being equal, is achieved as a result of optimizing the static analogue of the generative model – recurrent neural network. Our own empirical results show that with a near-zero mean square error on the training set, which is demonstrated simultaneously by the recurrent and generative models, the error of the latter on the test set is lower. The adversarial approach also outperformed alternative reference models in out-of-sample forecasting accuracy: a convolutional neural network adapted for time series forecasting and an autoregressive linear model. Application of the proposed approach has shown that a generative-adversarial model with a given universal architecture and a limited number of explanatory factors, subject to additional training on data specific to the target node of the power system, can be used to predict prices in market nodes for the day ahead without significant deviations.

Publisher

National Research University, Higher School of Economics (HSE)

Subject

Management of Technology and Innovation,Economics and Econometrics,Information Systems,Business and International Management,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3