Application of neural network technologies to assess the competence of personnel in the tasks of controlling the operational risk of a credit institution

Author:

Chumakova EkaterinaORCID,Korneev DmitryORCID,Gasparian MikhailORCID,Makhov IliaORCID

Abstract

The article is devoted to issues of controlling the operational risks of a credit institution associated with the actions of personnel. Operational risk control is an important aspect of a credit institution’s business. Despite the fact that the Bank of Russia in regulatory documents described in detail the set of actions that banks should take to control operational risks, in practice credit institutions experience serious difficulties in dealing with operational risk associated with the actions of personnel. This may be explained, first, by the difficulty of identifying and formalizing the specified risk. One of the main sources of operational risks associated with personnel actions is employees’ lack of qualifications. This can lead to reduced availability and quality of services provided by credit institutions, as well as possible financial and reputational losses. The purpose of the research conducted by the authors is to improve the system of control of operational risks in a credit institution using artificial intelligence technologies, including the development of tools for assessing in an automated mode the level of criticality of the influence of personnel competence on the occurrence of operational risk events. To achieve this goal, an artificial neural network (ANN) was developed using the high-level Keras library in Python. This paper defines a set of key indicators that have the most significant impact on the possibility of operational risk associated with the actions of the personnel in a credit institution. The article presents the results of checking the generated sets of training and test data using application software packages that implement mathematical methods to assess the consistency of the generated data sets. The paper presents graphs showing the results of training and testing of the artificial neural network that has been constructed. The results obtained are new and may allow credit institutions to significantly increase the efficiency of their work by digitalizing the solution of tasks to control the level of operational risk associated with the actions of personnel.

Publisher

National Research University, Higher School of Economics (HSE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3