Automatic Scoring of Verbal Divergent Thinking Tests: From Lexical Databases to Large Language Models

Author:

,Valueva EkaterinaORCID, ,Panfilova AnastasiaORCID, ,Rafikova AntoninaORCID, ,

Abstract

The article explores the evolution of methods for automatically assessing verbal divergent thinking tests. Resear - chers have increasingly focused on the ability to evaluate the originality of respondents' answers by calculating their semantic distance from the stimulus task. From 2009 to 2019, latent semantic analysis became the primary method for assessing semantic distances. Overall, in terms of internal consistency and correlation with expert ratings, its application yielded satisfactory results, maintaining an acceptable balance of quality and effort expended. However, issues emerged (dependence on the corpus used, result instability, systematic distortions related to the length of analyzed responses), prompting researchers to transition to more advanced models of distributional semantics (GloVe, Word2Vec etc.), large language models, and supervised learning. Large language models, especially those fine-tuned on creativity test materials, demonstrated higher effectiveness compared to models assessing semantic distances and approached expert evaluations. In addition to evaluating originality, the article considers works proposing methods for automatic assessment of elaboration, flexibility, associative flow, and divergent semantic integration. References to online platforms that allow for automatic assessments of originality in responses to divergent tests are provided. The issue of interpreting results obtained through large language models is discussed. A drawback of using these models is the lack of understanding of the basis on which judgments of the originality of creative products are made. The perspectives of applying explainable artificial intelligence for evaluating results of verbal and non-verbal tests of creative thinking are being discussed.

Publisher

National Research University, Higher School of Economics (HSE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3