Affiliation:
1. Victoria University, Melbourne
Abstract
Let $H$ be a Hilbert space. In this paper we show among others that, if the
selfadjoint operators $A$ and $B$ satisfy the condition $0$ $<$ $m\leq A,$ $B\leq
M,$ for some constants $m,$ $M,$ then
\begin{align*}
0& \leq \frac{m}{M^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}\otimes
1+1\otimes B^{2}}{2}-A\otimes B\right) \\
& \leq \left( 1-\nu \right) A\otimes 1+\nu 1\otimes B-A^{1-\nu }\otimes
B^{\nu } \\
& \leq \frac{M}{m^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}\otimes
1+1\otimes B^{2}}{2}-A\otimes B\right)
\end{align*}
for all $\nu \in \left[ 0,1\right] .$ We also have the inequalities for
Hadamard product
\begin{align*}
0& \leq \frac{m}{M^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}+B^{2}}{2}%
\circ 1-A\circ B\right) \\
& \leq \left[ \left( 1-\nu \right) A+\nu B\right] \circ 1-A^{1-\nu }\circ
B^{\nu } \\
& \leq \frac{M}{m^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}+B^{2}}{2}%
\circ 1-A\circ B\right)
\end{align*}
for all $\nu \in \left[ 0,1\right] .$
Publisher
Communications in Advanced Mathematical Sciences
Reference19 articles.
1. [1] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
2. [2] M. Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583–588.
3. [3] S. Furuichi, Refined Young inequalities with Specht’s ratio, Journal of the Egyptian Mathematical Society, 20(2012), 46–49.
4. [4] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262–269.
5. [5] F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59 (2011), 1031–1037.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献