1. Al-Zebari, A. and Sengur, A. (2019) 'Performance Comparison of Machine Learning Techniques on Diabetes Disease Detection', 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings, pp. 2-5.
2. Jader, R. and Aminifar, S., 2022. Fast and Accurate Artificial Neural Network Model for Diabetes Recogni-tion. NeuroQuantology, 20(10), pp.2187-2196.
3. Alapati, Y. and Sindhu, K. (2016) 'Combining Clustering with Classification: A Technique to Improve Classification Accuracy', International Journal of Computer Science Engineering, 5(06), pp. 336-338.
4. Alehegn, M., Joshi, R. and Alehegn, M. (2017) 'Analysis and prediction of diabetes diseases using machine learning algorithm: Ensemble approach.', International Research Journal of Engineering and Technology, 4(10), pp. 426-436. Available at: www.irjet.net.
5. Ali, N. et al. (2021) 'Effect of gestational diabetes mellitus history on future pregnancy behaviors: The Mutaba'ah study', International Journal of Environmental Research and Public Health, 18(1), pp. 1-12.