Classification of Erythemato-squamous diseases using Artificial Neural Network and Genetic algorithm

Author:

Abstract

This paper introduces a hybrid model using artificial neural network (ANN) and genetic algorithm (GA) to develop an efficient classification technique for classification of different categories of Erythemato-squamous diseases. Neural network has been extensively used in many applications like classification, regression, web mining, system identification and pattern recognition. Weight optimization in neural network has been a matter of concern for researchers in the field of soft computing. In this paper the weights of ANN are optimized with GA. The proposed hybrid model is applied on the Erythemato-squamous dataset taken from UCI machine learning repository. The dataset contains six different categories: psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, chronic dermatitis and pityriasis rubra pilaris of Erythemato-squamous diseases. The main aim of this paper is to determine the type of Eryhemato-Squamous disease using the hybrid model. The performance of the hybrid model is evaluated using statistical measures like accuracy, specificity and sensitivity. The accuracy of the proposed model is found to be 99.34% on test dataset. The experimental result shows the effectiveness of the hybrid model in classification of Erythematosquamous diseases.

Publisher

IJREAM Publishing House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3