Frictional Resistance Increase Due to Hull Roughness: An Analysis of the Hull Form Parameters Influence

Author:

Hakim Muhammad LuqmanORCID,Suastika I Ketut,Utama I Ketut Aria Pria,Purnamasari Dian,Muryadin Muryadin

Abstract

An awareness of the drag increase brought on by biofouling's roughness on the ship hull is one technique to cut emissions aboard ship. However, predicting the increased drag on ships poses significant challenges. When predicting the rise in frictional resistance brought on by roughness, the hull is considered flat. In fact, ship hulls have a variety of shapes, and it is not certain whether this is a factor influencing the magnitude of the increase in resistance due to roughness. In this article, the effect of the hull's form parameters— (ratio of length per breadth),  (coefficient block), and  (Length of center buoyancy)—on the increase in frictional resistance brought on by roughness have been investigated. The method used to calculate the ship resistance is Computational Fluid Dynamics (CFD) simulation, complemented by roughness modelling using the wall function approach method. The Design of Experiment (DOE) method has been used to vary the shape of the hull model as a variation of the test specimen in this study. The verification and validation tests have been carried out on the CFD simulation results, where the results have been compared with proven empirical methods. Based on the study results, the value of frictional resistance and increased frictional resistance () of all specimens has shown no significant difference in value, evidenced by the variance values, ranging only 1.57-2.1%. Thus, these results prove that the increase in frictional resistance due to roughness is sufficient to assume the ship's hull as a flat plate. The other finding is that roughness can also increase the pressure resistance, and hull shape parameters also contribute towards changes in the value of resistance.

Publisher

University of Split, Faculty of Maritime Studies

Subject

Law,Ocean Engineering,Transportation,Water Science and Technology,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3