A New Ridgely-Nevitt Regression-Based Computational Tool for Resistance and Power Predictions for Trawlers

Author:

Xhaferaj Blenard

Abstract

This paper aims to present the architecture and the prediction accuracy of a new computational procedure of the “Ship Power V 1.0” software based on the Ridgely–Nevitt regression, applied to hull resistance predictions for Ridgely-Nevitt series trawlers. The Ridgely-Nevitt series is an important series of trawlers developed by and tested at the Webb Institute. Experimental resistance data have also been presented in the form of a regression model used to develop a new procedure of the “Ship Power V 1.0” software. Furthermore, this new procedure was completely harmonized with other software procedures based on the Holtrop and Van Oortmerssen evaluation methods. Although the mathematical formulation of the Ridgely-Nevitt regression model allows the assessment of the residual resistance coefficient of only nine values from the speed-length ratio, the implementation of an interpolation procedure made possible resistance predictions for any speeds from the acceptable speed-length ratio range. Resistance prediction accuracy improvement introduced by the new procedure was proven by the validation of calculation results not only against experimental data but also against the prediction results of other software procedures for three hulls from the Ridgely-Nevitt fishing vessel series. MAPE (mean absolute percentage error) values calculated against experimental data for the analyzed models were 3.26, 1.71, and 3.36, respectively. Prediction result  comparisons of the Ridgely-Nevitt regression-based “Ship Power V 1.0” computational procedure and the experimental data and predictions of other computational procedures performed on three hulls from the Ridgely-Nevitt series have shown a substantial improvement in prediction accuracy.

Publisher

University of Split, Faculty of Maritime Studies

Subject

Law,Ocean Engineering,Transportation,Water Science and Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3