Wood density estimation using dendrometric and edaphoclimatic data in artificial neural networks

Author:

Werneburg Mauro Antônio PereiraORCID,Silva Mayra Luiza Marques daORCID,Leite Helio GarciaORCID,Silva Antonilmar Araújo Lopes daORCID,Gleriani José MarinaldoORCID,Silva Jeferson Pereira MartinsORCID,Moreira Tais RizzoORCID,Rocha Sofia Maria GonçalvesORCID,Rodrigues Nívea Maria MafraORCID

Abstract

Forestry measurement is aimed at volumetric production of wood; however, for the pulp processing industry, the main interest is productivity in wood biomass and, to know this variable, it is necessary to determine the basic wood density (BWD) beforehand. Artificial neural networks (ANN) have been used in the forestry sector quite successfully to describe the dynamics of forest characteristics, such as estimating wood volume. In this context, the objective of this study was to assess the accuracy of the basic wood density estimates by means of ANN’s with Continuous Forest Inventory (CFI) and edaphoclimatic input variables. The database consisted of 3,797 data, from permanent plots of the CFI conducted in Eucalyptus sp stands and edaphoclimatic data from the planting sites. The five best ANNs were selected and the analysis of the estimates was carried out through the correlation between the estimated and BWD, the relative root mean square error (RMSE%) and graphical information. It was observed that both the CFI, edaphoclimatic information and the combination of both are potential and present similar results for the basic wood density estimate, and the errors associated with the estimates are between 3.9% to 3.5%.  The ANNs based only on the CFI information presented higher RMSE. The use of ANN’s is feasible for estimating BWD and allows for excellent accuracy statistics.

Publisher

Universidade do Estado de Santa Catarina

Reference36 articles.

1. ALCÂNTARA AEM. 2015. Redes Neurais Artificiais para prognose do crescimento e da produção de povoamento de eucalipto em Minas Gerais. Tese (Doutorado em Ciência Florestal). Viçosa: UFV. 58p.

2. ALMEIDA MNF et al. 2020. Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. Forest Ecology and Management 458: 117743.

3. ASSIS TF. 2014. Melhoramento genético de Eucalyptus: desafios e perspectivas. In: Encontro Brasileiro de Silvicultura. Anais… Curitiba: Malinovski. p.307.

4. BARBOSA TL et al. 2019. Influence of site in the wood quality of Eucalyptus in plantations in Brazil. Southern Forests: a journal of Forest Science 81: 247-253.

5. BINOTI DHB. 2010. Estratégias de regulação de florestas equiâneas com vistas ao manejo da paisagem. Dissertação (Mestrado em Ciência Florestal). Viçosa: UFV. 145p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3