Analysis of the effectiveness of ML algorithms for emotion recognition, taking into account prosodic and spectral features

Author:

Zavrumov Zaur Aslanovich1ORCID,Goncharova Oksana Vladimirovna1ORCID,Levit Alina Aleksandrovna1ORCID

Affiliation:

1. Pyatigorsk State University

Abstract

The aim of the study is to determine the optimal classifier for identifying an emotional state based on the results of a comparative analysis of the effectiveness of various machine learning algorithms based on a combination of prosodic and spectral features. The scientific novelty consists in the application of ML algorithms in the recognition of emotionally marked speech of North Caucasian bilinguals in the problem of binary classification of the presence or absence of an accent with the determination of the optimal combination of universal prosodic and spectral features. During the study, an experimental corpus of speech of representatives of three ethnic groups (Russians, Kabardians and Armenians) was created with an annotation of the degree of accent, prosodic (94 signs) and spectral (74 signs) characteristics were extracted from speech signals, a comparative analysis of the effectiveness of machine learning algorithms (logistic regression, k-nearest neighbors, the method of support vectors, decision trees) in the problem of binary classification of the presence/absence of emphasis. The results of the study showed that at the syllabic level, the most effective is the decision tree model with combined features, and at the phrasal level, the k-nearest neighbor model with prosodic features. Universal prosodic features that form the basis of the "language model of emotions" were identified, as well as typological differences in their implementation, reflecting the influence of the native language on the emotional speech of bilinguals.

Publisher

Gramota Publishing

Reference28 articles.

1. Анашкина И. А. Звучащий текст в аспекте культурной аксиологии / М-во общ. и проф. образования РФ. Морд. гос. пед. ин-т им. М. Е. Евсевьева. Саранск: Морд. гос. пед. ин-т им. М. Е. Евсевьева, 1998.

2. Астахов Д. А., Катаев А. В. Использование современных алгоритмов машинного обучения для задачи распознавания эмоций // Cloud of science. 2018. № 4.

3. Богданова Д. Р., Акушев А. Т. Распознавание эмоций по речевому сигналу // E-Scio. 2021. № 6 (57).

4. Вишневская Г. М. Английская интонация (в условиях русской интерференции): учебное пособие / Иван. гос. ун-т. Иваново, 1985.

5. Воробьева О. В. Просодия имплицитного несогласия в русской речи северокавказских армянских билингвов: экспериментально-фонетическое исследование: дисс.. к. филол. н. Пятигорск, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3