Identification of “toxicity” in social networks based on the semantic proximity criterion

Author:

Kurganskaia Ekaterina Vladimirovna1ORCID,Stepanova Natalia Valentinovna1ORCID

Affiliation:

1. Saint Petersburg Electrotechnical University “LETI”

Abstract

The aim of the research is to check the effectiveness of the method of automatic identification of “toxic” comments of users in social networks based on semantic proximity. The article carries out a linguistic analysis of examples of “toxic” behavior, defines the criteria of “toxicity” and the main lexical and stylistic features of “toxic” texts. The analysis of the latest works on the topic gives a general idea of the current methods of identifying “toxicity”. A solution for identifying “toxic” comments based on the idea of the lack of semantic proximity between the text of the post and the “toxic” comment is tested. The scientific novelty lies in the fact that the work proposes for the first time to use the criterion of semantic proximity to identify “toxic” comments, which is a fairly simple and effective solution. Moreover, such studies have not been conducted earlier within the framework of the most popular Russian-language social network VKontakte. As a result of the research, it was found that determining the semantic proximity between a post and a comment is a fairly effective way to determine the relevance of a comment and, consequently, its probable “toxic” connotation. It was also found that the cosine similarity metric is suitable for conducting experiments to identify “toxicity”, but to improve the results, it can be supplemented with other machine learning methods.

Publisher

Gramota Publishing

Reference24 articles.

1. Арутюнова Н. Д. Дискурс // Лингвистический энциклопедический словарь / отв. ред. В. Н. Ярцева. М.: СЭ, 1990.

2. Буряковская В. А., Дмитриева О. А. Квазинаучный термин «токсичный» в современной блогосфере (на материале русского, английского и французского языков) // Известия Волгоградского государственного педагогического университета. 2022. № 5 (168).

3. Галичкина Е. Н. Специфика компьютерного дискурса на английском и русском языках: на материале жанра компьютерных конференций: дисс. … к. филол. н. Астрахань, 2001.

4. Грибовод Е. Г. Дискурс // Дискурс-Пи. 2013. Т. 10. № 3.

5. Ефанова А. А., Осокин А. А. Дискурс социальных медиа: к проблеме интерпретации // Вопросы теории и практики журналистики. 2022. Т. 11. № 3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3