Abstract
Edge irregular mapping or vertex mapping h : V (G) −→ {1, 2, 3, ..., s} is a mapping of vertices in such a way that all edges have distinct weights. We evaluate weight of any edge by using equation wth(cd) =h(c)+h(d), ∀c, d ∈ V (G) and ∀cd ∈ E(G). Edge irregularity strength denoted by es(G) is a minimum positive integer used to label vertices to form edge irregular labeling. In this paper, we find exact value of edge irregularity strength of linear phenylene graph P Hn, Bn graph and different families of snake graph.
Publisher
Universidad Catolica del Norte - Chile
Reference31 articles.
1. [1] A. Ahmad, M. Baca, Y. Bashir, and M. K. Siddiqui, "Total edge irregularity strength of strong product of two paths", Ars Combinatoria, vol. 106, pp. 449-459, 2012.
2. [2] A. Ahmad, M. Baca, and M. K. Siddiqui, "On edge irregular total labeling of categorical product of two cycles". Theory of Computing Systems, vol. 54, no. 1, pp. 1-12, 2014. doi: 10.1007/s00224-013-9470-3
3. [3] A. Ahmad, O. B. S. Al-Mushayt, and M. Baca, "On edge irregularity strength of graphs", Appl. Math. Comput, vol. 243, pp. 607-610, 2014. doi: 10.1016/j.amc.2014.06.028
4. [4] A. Ahmad, M. Arshad, and G. Iarkov, "Irregular labelings of helm and sun graphs". AKCE International Journal of Graphs and combinatorics, vol. 12, no. 2-3, pp. 161-168, 2015. doi: 10.1016/j.akcej.2015.11.010
5. [5] A. Ahmad, M. Baca, and M. F. Nadeem, "On edge irregularity strength of Toeplitz graphs", U.P.B. Sci. Bull., Series A, vol. 78, no. 4, pp. 155-162, 2016.