Abstract
Let R be a ring with involution containing a nontrivial symmetric idempotent element e. Let δ : R → R be a mapping such that δ(ab) = δ(b)a∗ + b∗δ(a) for all a, b ∈ R, we call δ a ∗−reverse derivable map on R. In this paper, our aim is to show that under some suitable restrictions imposed on R, every ∗−reverse derivable map of R is additive.
Publisher
Universidad Catolica del Norte - Chile
Reference19 articles.
1. [1] M. Bresăr, and J. Vukman, "Jordan derivations on prime rings", Bull. Aust. Math. Soc., vol. 37, no. 3, pp. 321-322, 1988.
2. [2] M. Bresăr, and J. Vukman, "Jordan (θ, φ)-derivations", Glas. Mat. Ser. III, vol. 26, no. 1-2, pp. 13-17, 1991.
3. [3] M. N. Daif, "When is a multiplicative derivation additive?", Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615-618, 1991.
4. [4] M. N. Daif, and M. S. Tammam-El-Sayiad, "Multiplicative generalized derivations which are additive", East-West J. Math., vol. 9, no. 1, pp. 31-37, 2007.
5. [5] D. Eremita, and D. Ilisevic, "On additivity of centralisers", Bull. Aust. Math. Soc., vol. 74, pp. 177-184, 2006.