Abstract
In this paper, we consider general convex functions of various type. We establish some new integral inequalities of Hermite-Hadamard type for (h, s, m)-convex and (h, m)-convex functions, using generalized integrals. We also investigate differentiable functions with general convex derivative. The proven results generalize many results previously known from the literature.
Publisher
Universidad Catolica del Norte - Chile
Reference56 articles.
1. [1] P. Agarwal, M. Jleli, and M. Tomar, "Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals", J. Inequal. Appl., vol. 2017, no. 55, 2017. doi: 10.1186/s13660-017-1318-y
2. [2] A. Akkurt, M. E. Yildirim, and H. Yildirim, "On some integral inequalities for (k, h)-Riemann-Liouville fractional integral", New Trends in Mathematical Sciences, vol. 4, no. 1, pp. 138-146, 2016. doi: 10.20852/ntmsci.2016217824
3. [3] M. A. Ali, J. E. Nápoles V., A. Kashuri, and Z. Zhang, "Fractional non conformable Hermite-Hadamard inequalities for generalized φ-convex functions", Fasc. Math., vol. 64, pp. 5-16, 2020. doi: 10.21008/j.0044-4413.2020.0007
4. [4] M. Alomari and M. Darus, "Some Ostrowski Type Inequalities for Quasi-Convex Functions with Applications to Special Means", RGMIA Res. Rep. Coll., vol. 13, no. 2, art. 3, 2010. https://bit.ly/47lvvei
5. [5] M. U. Awan, M. A. Noor, F. Safdar, A. Islam, M. V. Mihai, and K. I. Noor, "Hermite-Hadamard type inequalities with applications", Miskolc Math. Notes, vol. 21, no. 2, pp. 593-614, 2020. doi: 10.18514/MMN.2020.2837