Publisher
Universidad Catolica del Norte - Chile
Reference14 articles.
1. B. Andrásfai, P. Erdös, and V. Sós, "On the connection between chromatic number, maximal clique and minimal degree of a graph", Discrete Mathematics, vol. 8, no. 3, pp. 205-218, May 1974, doi: 10.1016/0012-365X(74)90133-2.
2. J. Bondy and U. Murty, Graph theory, Elsevier Science: New York, 1976.
3. R. Brooks, "On colouring the nodes of a network", Mathematical Proceedings of the Cambridge Philosophical Society, vol. 37, no. 2, pp. 194-197, Apr. 1941, doi: 10.1017/S030500410002168X.
4. G. Chartrand and L. Lesniak, Graphs & digraphs. Boca Raton, FL: Chapman & Hall/CRC, 2000.
5. G. Chartrand and P. Zhang, Chromatic graph theory. (Discrete Mathematics and Its Applications) Boca Raton, FL: CRC Press, 2009.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Coloring in graphs of twist knots;Numerical Methods for Partial Differential Equations;2020-12
2. On J-Colouring of Chithra Graphs;National Academy Science Letters;2020-02-08
3. Generalisation of the rainbow neighbourhood number and -jump colouring of a graph;Annales Mathematicae et Informaticae;2020
4. On J-colorability of certain derived graph classes;Acta Universitatis Sapientiae, Informatica;2019-12-01
5. On Certain J-Colouring Parameters of Graphs;National Academy Science Letters;2019-03-09