In-silico identification of natural antiviral drug against SARS-CoV-2 and comparison with potential FDA approved drug targets

Author:

AKERMI SARRA1,Lohar Neha1,Sinha Subrata2,Johari Surabhi3,Jayant Sunil1,Nigam Anshul4

Affiliation:

1. 1Annotation Analytics Pvt. Ltd., 36,Ward no-14, Biswa, Amanpura, Gurgaon-122001, Gurgaon, India

2. 2Centre for Biotechnology and Bioinformatics, Dibrugarh University, Assam, India

3. 3Institute of Management Studies (IMSUC), Ghaziabad, Uttar Pradesh, India

4. 4Amity University Mumbai, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India

Abstract

Antimalarial drugs Chloroquine and Hydroxychloroquine have garnered most attention recently as a successful remedy for COVID19. However, the use of these drugs is still questionable due to its undetermined efficacy and side effects. The present study utilizes in-silico high throughput screening of FDA approved antiviral compounds and secondary plant metabolites against spike protein of novel coronavirus (SARS-CoV-2). This target was chosen because it is instrumental in entry of virus into human cells. It is observed that the plant compound Tocopheryl-curcumin has more affinity for spike protein of SARS-CoV-2 in comparison to the majority of FDA approved drugs. Tocopheryl-curcumin binds with the binding site of RBD domain of spike protein (6VSB, chain A) with free energy (∆G) of binding of -11.20 kcal/mol and makes strong hydrogen bonds with amino acid residues of S366, V367, L368, S373, and K529. Among the FDA approved drugs, Pibrentasvir obtains top rank with free energy (∆G) of binding of -9.69 kcal/mol. whereas; surprisingly Chloroquine (-6.87 kcal/mol) and Hydroxychloroquine (-7.24 kcal/mol) ranked lower in our docking study. The toxicity prediction by VEGA predicts that tocopheryl-curcumin shows no toxicity as compared to FDA approved drugs. Therefore, we infer that the plant-based tocopheryl-curcumin could be considered as potential and safer drug against COVID 19 disease as compared to chemical based drugs.

Publisher

Indian Science and Technology Foundation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3